Title: | Computes some Measures of OLL-G Family of Distributions |
---|---|
Description: | Computes the pdf, cdf, quantile function, hazard function and generating random numbers for Odd log-logistic family (OLL-G). This family have been developed by different authors in the recent years. See Alizadeh (2019) <doi:10.31801/cfsuasmas.542988> for example. |
Authors: | Danial Mazarei [aut, cre],
Hossein Haghbin [aut] |
Maintainer: | Danial Mazarei <[email protected]> |
License: | GPL (>= 2) |
Version: | 1.0.0 |
Built: | 2025-02-17 04:14:17 UTC |
Source: | https://github.com/dmazarei/ollg |
Computes the pdf, cdf, hdf, quantile and random numbers of the beta extended distribution due to Haghbin et al. (2017) specified by the pdf
for any valid continuous cdf ,
,
the corresponding pdf,
, the first shape parameter, and
, the second shape parameter.
panollg(x, alpha = 1, beta = 1, G = pnorm, ...) danollg(x, alpha = 1, beta = 1, G = pnorm, ...) qanollg(q, alpha = 1, beta = 1, G = pnorm, ...) ranollg(n, alpha = 1, beta = 1, G = pnorm, ...) hanollg(x, alpha = 1, beta = 1, G = pnorm, ...)
panollg(x, alpha = 1, beta = 1, G = pnorm, ...) danollg(x, alpha = 1, beta = 1, G = pnorm, ...) qanollg(q, alpha = 1, beta = 1, G = pnorm, ...) ranollg(n, alpha = 1, beta = 1, G = pnorm, ...) hanollg(x, alpha = 1, beta = 1, G = pnorm, ...)
x |
scaler or vector of values at which the pdf or cdf needs to be computed. |
alpha |
the value of the first shape parameter, must be positive, the default is 1. |
beta |
the value of the second shape parameter, must be positive, the default is 1. |
G |
A baseline continuous cdf. |
... |
The baseline cdf parameters. |
q |
scaler or vector of probabilities at which the quantile needs to be computed. |
n |
number of random numbers to be generated. |
panollg
gives the distribution function,
danollg
gives the density,
qanollg
gives the quantile function,
hanollg
gives the hazard function and
ranollg
generates random variables from the A New Odd log-logistic family of
distributions (ANOLL-G) for baseline cdf G.
Haghbin, Hossein, et al. "A new generalized odd log-logistic family of distributions." Communications in Statistics-Theory and Methods 46.20(2017): 9897-9920.
x <- seq(0, 1, length.out = 21) panollg(x) panollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) danollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) curve(danollg, -3, 3) qanollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) n <- 10 ranollg(n, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) hanollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) curve(hanollg, -3, 3)
x <- seq(0, 1, length.out = 21) panollg(x) panollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) danollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) curve(danollg, -3, 3) qanollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) n <- 10 ranollg(n, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) hanollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) curve(hanollg, -3, 3)
Computes the pdf, cdf, hdf, quantile and random numbers of the beta extended distribution due to Cordeiro et al. (2016) specified by the pdf
for any valid continuous cdf ,
,
the corresponding pdf,
, the beta function,
, the shape parameter,
, the first shape parameter.
pbollg(x, alpha = 1, a = 1, b = 1, G = pnorm, ...) dbollg(x, alpha = 1, a = 1, b = 1, G = pnorm, ...) qbollg(q, alpha = 1, a = 1, b = 1, G = pnorm, ...) rbollg(n, alpha = 1, a = 1, b = 1, G = pnorm, ...) hbollg(x, alpha = 1, a = 1, b = 1, G = pnorm, ...)
pbollg(x, alpha = 1, a = 1, b = 1, G = pnorm, ...) dbollg(x, alpha = 1, a = 1, b = 1, G = pnorm, ...) qbollg(q, alpha = 1, a = 1, b = 1, G = pnorm, ...) rbollg(n, alpha = 1, a = 1, b = 1, G = pnorm, ...) hbollg(x, alpha = 1, a = 1, b = 1, G = pnorm, ...)
x |
scaler or vector of values at which the pdf or cdf needs to be computed. |
alpha |
the value of the first shape parameter, must be positive, the default is 1. |
a |
the value of the shape parameter, must be positive, the default is 1. |
b |
the value of the shape parameter, must be positive, the default is 1. |
G |
A baseline continuous cdf. |
... |
The baseline cdf parameters. |
q |
scaler or vector of probabilities at which the quantile needs to be computed. |
n |
number of random numbers to be generated. |
pbollg
gives the distribution function,
dbollg
gives the density,
qbollg
gives the quantile function,
hbollg
gives the hazard function and
rbollg
generates random variables from the The beta Odd log-logistic family of
distributions (BOLL-G) for baseline cdf G.
Cordeiro, G. M., Alizadeh, M., Tahir, M. H., Mansoor, M., Bourguignon, M., Hamedani, G. G. (2016). The beta odd log-logistic generalized family of distributions. Hacettepe Journal of Mathematics and Statistics, 45(4), 1175-1202.
x <- seq(0, 1, length.out = 21) pbollg(x) pbollg(x, alpha = 2, a = 2, b = 2, G = pbeta, shape1 = 1, shape2 = 2) dbollg(x, alpha = 2, a = 2, b = 2, G = pbeta, shape1 = 1, shape2 = 2) curve(dbollg, -3, 3) qbollg(x, alpha = 2, a = 2, b = 2, G = pbeta, shape1 = 1, shape2 = 2) n <- 10 rbollg(n, alpha = 2, a = 2, b = 2, G = pbeta, shape1 = 1, shape2 = 2) hbollg(x, alpha = 2, a = 2, b = 2, G = pbeta, shape1 = 1, shape2 = 2) curve(hbollg, -3, 3)
x <- seq(0, 1, length.out = 21) pbollg(x) pbollg(x, alpha = 2, a = 2, b = 2, G = pbeta, shape1 = 1, shape2 = 2) dbollg(x, alpha = 2, a = 2, b = 2, G = pbeta, shape1 = 1, shape2 = 2) curve(dbollg, -3, 3) qbollg(x, alpha = 2, a = 2, b = 2, G = pbeta, shape1 = 1, shape2 = 2) n <- 10 rbollg(n, alpha = 2, a = 2, b = 2, G = pbeta, shape1 = 1, shape2 = 2) hbollg(x, alpha = 2, a = 2, b = 2, G = pbeta, shape1 = 1, shape2 = 2) curve(hbollg, -3, 3)
Computes the pdf, cdf, hdf, quantile and random numbers of the beta extended distribution due to Alizadeh et al. (2020) specified by the pdf
for any valid continuous cdf ,
,
the corresponding pdf,
, the first shape parameter, and
, the second shape parameter.
peollg(x, alpha = 1, beta = 1, G = pnorm, ...) deollg(x, alpha = 1, beta = 1, G = pnorm, ...) qeollg(q, alpha = 1, beta = 1, G = pnorm, ...) reollg(n, alpha = 1, beta = 1, G = pnorm, ...) heollg(x, alpha = 1, beta = 1, G = pnorm, ...)
peollg(x, alpha = 1, beta = 1, G = pnorm, ...) deollg(x, alpha = 1, beta = 1, G = pnorm, ...) qeollg(q, alpha = 1, beta = 1, G = pnorm, ...) reollg(n, alpha = 1, beta = 1, G = pnorm, ...) heollg(x, alpha = 1, beta = 1, G = pnorm, ...)
x |
scaler or vector of values at which the pdf or cdf needs to be computed. |
alpha |
the value of the first shape parameter, must be positive, the default is 1. |
beta |
the value of the second shape parameter, must be positive, the default is 1. |
G |
A baseline continuous cdf. |
... |
The baseline cdf parameters. |
q |
scaler or vector of probabilities at which the quantile needs to be computed. |
n |
number of random numbers to be generated. |
peollg
gives the distribution function,
deollg
gives the density,
qeollg
gives the quantile function,
heollg
gives the hazard function and
reollg
generates random variables from the Exponentiated Odd log-logistic family of
distributions (EOLL-G) for baseline cdf G.
ALIZADEH, Morad; TAHMASEBI, Saeid; HAGHBIN, Hossein. The exponentiated odd log-logistic family of distributions: Properties and applications. Journal of Statistical Modelling: Theory and Applications, 2020, 1. Jg., Nr. 1, S. 29-52.
x <- seq(0, 1, length.out = 21) peollg(x) peollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) deollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) curve(deollg, -3, 3) qeollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) n <- 10 reollg(n, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) heollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) curve(heollg, -3, 3)
x <- seq(0, 1, length.out = 21) peollg(x) peollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) deollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) curve(deollg, -3, 3) qeollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) n <- 10 reollg(n, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) heollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) curve(heollg, -3, 3)
Computes the pdf, cdf, hdf, quantile and random numbers of the beta extended distribution due to Cordeiro et al. (2017) specified by the pdf
for any valid continuous cdf ,
,
the corresponding pdf,
, the first shape parameter, and
, the second shape parameter.
pgollg(x, alpha = 1, beta = 1, G = pnorm, ...) dgollg(x, alpha = 1, beta = 1, G = pnorm, ...) qgollg(q, alpha = 1, beta = 1, G = pnorm, ...) rgollg(n, alpha = 1, beta = 1, G = pnorm, ...) hgollg(x, alpha = 1, beta = 1, G = pnorm, ...)
pgollg(x, alpha = 1, beta = 1, G = pnorm, ...) dgollg(x, alpha = 1, beta = 1, G = pnorm, ...) qgollg(q, alpha = 1, beta = 1, G = pnorm, ...) rgollg(n, alpha = 1, beta = 1, G = pnorm, ...) hgollg(x, alpha = 1, beta = 1, G = pnorm, ...)
x |
scaler or vector of values at which the pdf or cdf needs to be computed. |
alpha |
the value of the first shape parameter, must be positive, the default is 1. |
beta |
the value of the second shape parameter, must be positive, the default is 1. |
G |
A baseline continuous cdf. |
... |
The baseline cdf parameters. |
q |
scaler or vector of probabilities at which the quantile needs to be computed. |
n |
number of random numbers to be generated. |
pgollg
gives the distribution function,
dgollg
gives the density,
qgollg
gives the quantile function,
hgollg
gives the hazard function and
rgollg
generates random variables from the Generalized Odd log-logistic family of
distributions (GOLL-G) for baseline cdf G.
Cordeiro, G.M., Alizadeh, M., Ozel, G., Hosseini, B., Ortega, E.M.M., Altun, E. (2017). The generalized odd log-logistic family of distributions : properties, regression models and applications. Journal of Statistical Computation and Simulation ,87(5),908-932.
x <- seq(0, 1, length.out = 21) pgollg(x) pgollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) dgollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) curve(dgollg, -3, 3) qgollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) n <- 10 rgollg(n, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) hgollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) curve(hgollg, -3, 3)
x <- seq(0, 1, length.out = 21) pgollg(x) pgollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) dgollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) curve(dgollg, -3, 3) qgollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) n <- 10 rgollg(n, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) hgollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) curve(hgollg, -3, 3)
Computes the pdf, cdf, hdf, quantile and random numbers of the beta extended distribution due to Alizadeh et al. (2017) specified by the pdf
for any valid continuous cdf ,
,
the corresponding pdf,
, the shape parameter,
, the first shape parameter.
pkwollg(x, alpha = 1, a = 1, b = 1, G = pnorm, ...) dkwollg(x, alpha = 1, a = 1, b = 1, G = pnorm, ...) qkwollg(q, alpha = 1, a = 1, b = 1, G = pnorm, ...) rkwollg(n, alpha = 1, a = 1, b = 1, G = pnorm, ...) hkwollg(x, alpha = 1, a = 1, b = 1, G = pnorm, ...)
pkwollg(x, alpha = 1, a = 1, b = 1, G = pnorm, ...) dkwollg(x, alpha = 1, a = 1, b = 1, G = pnorm, ...) qkwollg(q, alpha = 1, a = 1, b = 1, G = pnorm, ...) rkwollg(n, alpha = 1, a = 1, b = 1, G = pnorm, ...) hkwollg(x, alpha = 1, a = 1, b = 1, G = pnorm, ...)
x |
scaler or vector of values at which the pdf or cdf needs to be computed. |
alpha |
the value of the first shape parameter, must be positive, the default is 1. |
a |
the value of the shape parameter, must be positive, the default is 1. |
b |
the value of the shape parameter, must be positive, the default is 1. |
G |
A baseline continuous cdf. |
... |
The baseline cdf parameters. |
q |
scaler or vector of probabilities at which the quantile needs to be computed. |
n |
number of random numbers to be generated. |
pkwollg
gives the distribution function,
dkwollg
gives the density,
qkwollg
gives the quantile function,
hkwollg
gives the hazard function and
rkwollg
generates random variables from the Kumaraswamy Odd log-logistic family of
distributions (KwOLL-G) for baseline cdf G.
Alizadeh, M., Emadi, M., Doostparast, M., Cordeiro, G. M., Ortega, E. M., Pescim, R. R. (2015). A new family of distributions: the Kumaraswamy odd log-logistic, properties and applications. Hacettepe Journal of Mathematics and Statistics, 44(6), 1491-1512.
x <- seq(0, 1, length.out = 21) pkwollg(x) pkwollg(x, alpha = 2, a = 2, b = 2, G = pbeta, shape1 = 1, shape2 = 2) dkwollg(x, alpha = 2, a = 2, b = 2, G = pbeta, shape1 = 1, shape2 = 2) curve(dkwollg, -3, 3) qkwollg(x, alpha = 2, a = 2, b = 2, G = pbeta, shape1 = 1, shape2 = 2) n <- 10 rkwollg(n, alpha = 2, a = 2, b = 2, G = pbeta, shape1 = 1, shape2 = 2) hkwollg(x, alpha = 2, a = 2, b = 2, G = pbeta, shape1 = 1, shape2 = 2) curve(hkwollg, -3, 3)
x <- seq(0, 1, length.out = 21) pkwollg(x) pkwollg(x, alpha = 2, a = 2, b = 2, G = pbeta, shape1 = 1, shape2 = 2) dkwollg(x, alpha = 2, a = 2, b = 2, G = pbeta, shape1 = 1, shape2 = 2) curve(dkwollg, -3, 3) qkwollg(x, alpha = 2, a = 2, b = 2, G = pbeta, shape1 = 1, shape2 = 2) n <- 10 rkwollg(n, alpha = 2, a = 2, b = 2, G = pbeta, shape1 = 1, shape2 = 2) hkwollg(x, alpha = 2, a = 2, b = 2, G = pbeta, shape1 = 1, shape2 = 2) curve(hkwollg, -3, 3)
Computes the pdf, cdf, hdf, quantile and random numbers of the beta extended distribution due to Gleaton et al. (2010) specified by the pdf
for any valid continuous cdf ,
,
the corresponding pdf,
, the first shape parameter, and
, the second shape parameter.
pmoollg(x, alpha = 1, beta = 1, G = pnorm, ...) dmoollg(x, alpha = 1, beta = 1, G = pnorm, ...) qmoollg(q, alpha = 1, beta = 1, G = pnorm, ...) rmoollg(n, alpha = 1, beta = 1, G = pnorm, ...) hmoollg(x, alpha = 1, beta = 1, G = pnorm, ...)
pmoollg(x, alpha = 1, beta = 1, G = pnorm, ...) dmoollg(x, alpha = 1, beta = 1, G = pnorm, ...) qmoollg(q, alpha = 1, beta = 1, G = pnorm, ...) rmoollg(n, alpha = 1, beta = 1, G = pnorm, ...) hmoollg(x, alpha = 1, beta = 1, G = pnorm, ...)
x |
scaler or vector of values at which the pdf or cdf needs to be computed. |
alpha |
the value of the first shape parameter, must be positive, the default is 1. |
beta |
the value of the second shape parameter, must be positive, the default is 1. |
G |
A baseline continuous cdf. |
... |
The baseline cdf parameters. |
q |
scaler or vector of probabilities at which the quantile needs to be computed. |
n |
number of random numbers to be generated. |
pmoollg
gives the distribution function,
dmoollg
gives the density,
qmoollg
gives the quantile function,
hmoollg
gives the hazard function and
rmoollg
generates random variables from the Marshal-Olkin Odd log-logistic family of
distributions (MOOLL-G) for baseline cdf G.
Gleaton, J. U., Lynch, J. D. (2010). Extended generalized loglogistic families of lifetime distributions with an application. J. Probab. Stat.Sci, 8(1), 1-17.
x <- seq(0, 1, length.out = 21) pmoollg(x) pmoollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) dmoollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) curve(dmoollg, -3, 3) qmoollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) n <- 10 rmoollg(n, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) hmoollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) curve(hmoollg, -3, 3)
x <- seq(0, 1, length.out = 21) pmoollg(x) pmoollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) dmoollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) curve(dmoollg, -3, 3) qmoollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) n <- 10 rmoollg(n, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) hmoollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) curve(hmoollg, -3, 3)
Computes the pdf, cdf, hdf, quantile and random numbers of the beta extended distribution due to Alizadeh et al. (2019) specified by the pdf
for any valid continuous cdf ,
,
the corresponding pdf,
, the first shape parameter, and
, the second shape parameter.
pnollg(x, alpha = 1, beta = 1, G = pnorm, ...) dnollg(x, alpha = 1, beta = 1, G = pnorm, ...) qnollg(q, alpha = 1, beta = 1, G = pnorm, ...) rnollg(n, alpha = 1, beta = 1, G = pnorm, ...) hnollg(x, alpha = 1, beta = 1, G = pnorm, ...)
pnollg(x, alpha = 1, beta = 1, G = pnorm, ...) dnollg(x, alpha = 1, beta = 1, G = pnorm, ...) qnollg(q, alpha = 1, beta = 1, G = pnorm, ...) rnollg(n, alpha = 1, beta = 1, G = pnorm, ...) hnollg(x, alpha = 1, beta = 1, G = pnorm, ...)
x |
scaler or vector of values at which the pdf or cdf needs to be computed. |
alpha |
the value of the first shape parameter, must be positive, the default is 1. |
beta |
the value of the second shape parameter, must be positive, the default is 1. |
G |
A baseline continuous cdf. |
... |
The baseline cdf parameters. |
q |
scaler or vector of probabilities at which the quantile needs to be computed. |
n |
number of random numbers to be generated. |
pnollg
gives the distribution function,
dnollg
gives the density,
qnollg
gives the quantile function,
hnollg
gives the hazard function and
rnollg
generates random variables from the New Odd log-logistic family of
distributions (NOLL-G) for baseline cdf G.
Alizadeh, M., Altun, E., Ozel, G., Afshari, M., Eftekharian, A. (2019). A new odd log-logistic lindley distribution with properties and applications. Sankhya A, 81(2), 323-346.
x <- seq(0, 1, length.out = 21) pnollg(x) pnollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) dnollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) curve(dnollg, -3, 3) qnollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) n <- 10 rnollg(n, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) hnollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) curve(hnollg, -3, 3)
x <- seq(0, 1, length.out = 21) pnollg(x) pnollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) dnollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) curve(dnollg, -3, 3) qnollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) n <- 10 rnollg(n, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) hnollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) curve(hnollg, -3, 3)
Computes the pdf, cdf, hdf, quantile and random numbers of the beta extended distribution due to Alizadeh et al. (2017) specified by the pdf
for any valid continuous cdf ,
,
the corresponding pdf,
, the first shape parameter, and
, the second shape parameter.
pobug(x, alpha = 1, beta = 1, G = pnorm, ...) dobug(x, alpha = 1, beta = 1, G = pnorm, ...) qobug(q, alpha = 1, beta = 1, G = pnorm, ...) robug(n, alpha = 1, beta = 1, G = pnorm, ...) hobug(x, alpha = 1, beta = 1, G = pnorm, ...)
pobug(x, alpha = 1, beta = 1, G = pnorm, ...) dobug(x, alpha = 1, beta = 1, G = pnorm, ...) qobug(q, alpha = 1, beta = 1, G = pnorm, ...) robug(n, alpha = 1, beta = 1, G = pnorm, ...) hobug(x, alpha = 1, beta = 1, G = pnorm, ...)
x |
scaler or vector of values at which the pdf or cdf needs to be computed. |
alpha |
the value of the first shape parameter, must be positive, the default is 1. |
beta |
the value of the second shape parameter, must be positive, the default is 1. |
G |
A baseline continuous cdf. |
... |
The baseline cdf parameters. |
q |
scaler or vector of probabilities at which the quantile needs to be computed. |
n |
number of random numbers to be generated. |
pobug
gives the distribution function,
dobug
gives the density,
qobug
gives the quantile function,
hobug
gives the hazard function and
robug
generates random variables from the Odd Burr generated family of
distributions (OBu-G) for baseline cdf G.
Alizadeh, M., Cordeiro, G. M., Nascimento, A. D., Lima, M. D. C. S., Ortega, E. M. (2017). Odd-Burr generalized family of distributions with some applications. Journal of statistical computation and simulation, 87(2), 367-389.
x <- seq(0, 1, length.out = 21) pobug(x) pobug(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) dobug(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) curve(dobug, -3, 3) qobug(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) n <- 10 robug(n, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) hobug(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) curve(hobug, -3, 3)
x <- seq(0, 1, length.out = 21) pobug(x) pobug(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) dobug(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) curve(dobug, -3, 3) qobug(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) n <- 10 robug(n, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) hobug(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) curve(hobug, -3, 3)
Computes the pdf, cdf, hdf, quantile and random numbers of the beta extended distribution due to Gleaton et al. (2006) specified by the pdf
for any valid continuous cdf ,
,
the corresponding pdf,
, the first shape parameter.
pollg(x, alpha = 1, G = pnorm, ...) dollg(x, alpha = 1, G = pnorm, ...) qollg(q, alpha = 1, G = pnorm, ...) rollg(n, alpha = 1, G = pnorm, ...) hollg(x, alpha = 1, G = pnorm, ...)
pollg(x, alpha = 1, G = pnorm, ...) dollg(x, alpha = 1, G = pnorm, ...) qollg(q, alpha = 1, G = pnorm, ...) rollg(n, alpha = 1, G = pnorm, ...) hollg(x, alpha = 1, G = pnorm, ...)
x |
scaler or vector of values at which the pdf or cdf needs to be computed. |
alpha |
the value of the first shape parameter, must be positive, the default is 1. |
G |
A baseline continuous cdf. |
... |
The baseline cdf parameters. |
q |
scaler or vector of probabilities at which the quantile needs to be computed. |
n |
number of random numbers to be generated. |
pollg
gives the distribution function,
dollg
gives the density,
qollg
gives the quantile function,
hollg
gives the hazard function and
rollg
generates random variables from the Odd log-logistic family of
distributions (OLL-G) for baseline cdf G.
Gleaton, J. U., Lynch, J. D. (2006). Properties of generalized log-logistic families of lifetime distributions. Journal of Probability and Statistical Science, 4(1), 51-64.
x <- seq(0, 1, length.out = 21) pollg(x) pollg(x, alpha = 2, G = pbeta, shape1 = 1, shape2 = 2) dollg(x, alpha = 2, G = pbeta, shape1 = 1, shape2 = 2) curve(dollg, -3, 3) qollg(x, alpha = 2, G = pbeta, shape1 = 1, shape2 = 2) n <- 10 rollg(n, alpha = 2, G = pbeta, shape1 = 1, shape2 = 2) hollg(x, alpha = 2, G = pbeta, shape1 = 1, shape2 = 2) curve(hollg, -3, 3)
x <- seq(0, 1, length.out = 21) pollg(x) pollg(x, alpha = 2, G = pbeta, shape1 = 1, shape2 = 2) dollg(x, alpha = 2, G = pbeta, shape1 = 1, shape2 = 2) curve(dollg, -3, 3) qollg(x, alpha = 2, G = pbeta, shape1 = 1, shape2 = 2) n <- 10 rollg(n, alpha = 2, G = pbeta, shape1 = 1, shape2 = 2) hollg(x, alpha = 2, G = pbeta, shape1 = 1, shape2 = 2) curve(hollg, -3, 3)
Computes the pdf, cdf, hdf, quantile and random numbers of the beta extended distribution due to Haghbin et al. (2017) specified by the pdf
for any valid continuous cdf ,
,
the corresponding pdf,
, the first shape parameter, and
, the second shape parameter.
polllg(x, alpha = 1, beta = 0.1, G = pnorm, ...) dolllg(x, alpha = 1, beta = 0.1, G = pnorm, ...) qolllg(q, alpha = 1, beta = 0.1, G = pnorm, ...) rolllg(n, alpha = 1, beta = 0.1, G = pnorm, ...) holllg(x, alpha = 1, beta = 0.1, G = pnorm, ...)
polllg(x, alpha = 1, beta = 0.1, G = pnorm, ...) dolllg(x, alpha = 1, beta = 0.1, G = pnorm, ...) qolllg(q, alpha = 1, beta = 0.1, G = pnorm, ...) rolllg(n, alpha = 1, beta = 0.1, G = pnorm, ...) holllg(x, alpha = 1, beta = 0.1, G = pnorm, ...)
x |
scaler or vector of values at which the pdf or cdf needs to be computed. |
alpha |
the value of the first shape parameter, must be positive, the default is 1. |
beta |
the value of the second shape parameter, between 0 and 1, the default is 0.1. |
G |
A baseline continuous cdf. |
... |
The baseline cdf parameters. |
q |
scaler or vector of probabilities at which the quantile needs to be computed. |
n |
number of random numbers to be generated. |
polllg
gives the distribution function,
dolllg
gives the density,
qolllg
gives the quantile function,
holllg
gives the hazard function and
rolllg
generates random variables from the Odd log-logistic logarithmic family of
distributions (OLLL-G) for baseline cdf G.
Alizadeh, M., MirMostafee, S. M. T. K., Ortega, E. M., Ramires, T. G., Cordeiro, G. M. (2017). The odd log-logistic logarithmic generated family of distributions with applications in different areas. Journal of Statistical Distributions and Applications, 4(1), 1-25.
x <- seq(0, 1, length.out = 21) polllg(x) polllg(x, alpha = 2, beta = .2, G = pbeta, shape1 = 1, shape2 = 2) dolllg(x, alpha = 2, beta = .2, G = pbeta, shape1 = 1, shape2 = 2) curve(dolllg, -3, 3) qolllg(x, alpha = 2, beta = .2, G = pbeta, shape1 = 1, shape2 = 2) n <- 10 rolllg(n, alpha = 2, beta = .2, G = pbeta, shape1 = 1, shape2 = 2) holllg(x, alpha = 2, G = pbeta, beta = .2, shape1 = 1, shape2 = 2) curve(holllg, -3, 3)
x <- seq(0, 1, length.out = 21) polllg(x) polllg(x, alpha = 2, beta = .2, G = pbeta, shape1 = 1, shape2 = 2) dolllg(x, alpha = 2, beta = .2, G = pbeta, shape1 = 1, shape2 = 2) curve(dolllg, -3, 3) qolllg(x, alpha = 2, beta = .2, G = pbeta, shape1 = 1, shape2 = 2) n <- 10 rolllg(n, alpha = 2, beta = .2, G = pbeta, shape1 = 1, shape2 = 2) holllg(x, alpha = 2, G = pbeta, beta = .2, shape1 = 1, shape2 = 2) curve(holllg, -3, 3)
Computes the pdf, cdf, hdf, quantile and random numbers of the beta extended distribution due to Esmaeili et al. (2020) specified by the pdf
for any valid continuous cdf ,
,
the corresponding pdf,
the Gamma funcion,
, the first shape parameter, and
, the second shape parameter.
prbollg(x, alpha = 1, beta = 1, G = pnorm, ...) drbollg(x, alpha = 1, beta = 1, G = pnorm, ...) qrbollg(q, alpha = 1, beta = 1, G = pnorm, ...) rrbollg(n, alpha = 1, beta = 1, G = pnorm, ...) hrbollg(x, alpha = 1, beta = 1, G = pnorm, ...)
prbollg(x, alpha = 1, beta = 1, G = pnorm, ...) drbollg(x, alpha = 1, beta = 1, G = pnorm, ...) qrbollg(q, alpha = 1, beta = 1, G = pnorm, ...) rrbollg(n, alpha = 1, beta = 1, G = pnorm, ...) hrbollg(x, alpha = 1, beta = 1, G = pnorm, ...)
x |
scaler or vector of values at which the pdf or cdf needs to be computed. |
alpha |
the value of the first shape parameter, must be positive, the default is 1. |
beta |
the value of the second shape parameter, must be positive, the default is 1. |
G |
A baseline continuous cdf. |
... |
The baseline cdf parameters. |
q |
scaler or vector of probabilities at which the quantile needs to be computed. |
n |
number of random numbers to be generated. |
prbollg
gives the distribution function,
drbollg
gives the density,
qrbollg
gives the quantile function,
hrbollg
gives the hazard function and
rrbollg
generates random variables from the The Ristic-Balakrishnan Odd log-logistic family of
distributions (RBOLL-G) for baseline cdf G.
Esmaeili, H., Lak, F., Altun, E. (2020). The Ristic-Balakrishnan odd log-logistic family of distributions: Properties and Applications. Statistics, Optimization Information Computing, 8(1), 17-35.
x <- seq(0, 1, length.out = 21) prbollg(x) prbollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) drbollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) curve(drbollg, -3, 3) qrbollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) n <- 10 rrbollg(n, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) hrbollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) curve(hrbollg, -3, 3)
x <- seq(0, 1, length.out = 21) prbollg(x) prbollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) drbollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) curve(drbollg, -3, 3) qrbollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) n <- 10 rrbollg(n, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) hrbollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) curve(hrbollg, -3, 3)
Computes the pdf, cdf, hdf, quantile and random numbers of the beta extended distribution due to Cordeiro et al. (2016) specified by the pdf
for any valid continuous cdf ,
,
the corresponding pdf,
the Gamma funcion,
, the first shape parameter, and
, the second shape parameter.
pzbollg(x, alpha = 1, beta = 1, G = pnorm, ...) dzbollg(x, alpha = 1, beta = 1, G = pnorm, ...) qzbollg(q, alpha = 1, beta = 1, G = pnorm, ...) rzbollg(n, alpha = 1, beta = 1, G = pnorm, ...) hzbollg(x, alpha = 1, beta = 1, G = pnorm, ...)
pzbollg(x, alpha = 1, beta = 1, G = pnorm, ...) dzbollg(x, alpha = 1, beta = 1, G = pnorm, ...) qzbollg(q, alpha = 1, beta = 1, G = pnorm, ...) rzbollg(n, alpha = 1, beta = 1, G = pnorm, ...) hzbollg(x, alpha = 1, beta = 1, G = pnorm, ...)
x |
scaler or vector of values at which the pdf or cdf needs to be computed. |
alpha |
the value of the first shape parameter, must be positive, the default is 1. |
beta |
the value of the second shape parameter, must be positive, the default is 1. |
G |
A baseline continuous cdf. |
... |
The baseline cdf parameters. |
q |
scaler or vector of probabilities at which the quantile needs to be computed. |
n |
number of random numbers to be generated. |
pzbollg
gives the distribution function,
dzbollg
gives the density,
qzbollg
gives the quantile function,
hzbollg
gives the hazard function and
rzbollg
generates random variables from the The Zografos-Balakrishnan Odd log-logistic family of
distributions (ZBOLL-G) for baseline cdf G.
Cordeiro, G. M., Alizadeh, M., Ortega, E. M., Serrano, L. H. V. (2016). The Zografos-Balakrishnan odd log-logistic family of distributions: Properties and Applications. Hacettepe Journal of Mathematics and Statistics, 45(6), 1781-1803. .
x <- seq(0, 1, length.out = 21) pzbollg(x) pzbollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) dzbollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) curve(dzbollg, -3, 3) qzbollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) n <- 10 rzbollg(n, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) hzbollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) curve(hzbollg, -3, 3)
x <- seq(0, 1, length.out = 21) pzbollg(x) pzbollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) dzbollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) curve(dzbollg, -3, 3) qzbollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) n <- 10 rzbollg(n, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) hzbollg(x, alpha = 2, beta = 2, G = pbeta, shape1 = 1, shape2 = 2) curve(hzbollg, -3, 3)